RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2016

SECOND YEAR [BATCH 2014-17]

Date : 20/05/2016 Time : 11 am - 3 pm MATHEMATICS (Honours)

Full Marks : 100

[Use a separate Answer Book for each group]

Paper: IV

Group - A

Ans	swer <u>any five</u> questions from question no. <u>1 to 8</u> :	[5×7]
1.	a) Define a metric 'd' on \mathbb{N} such that (\mathbb{N},d) has no isolated point. Justify your answer. b) Let G be a dense open set in \mathbb{R} and $x \in \mathbb{R}$. Prove that there exist $a, b \in G$ such that $x = a - b$.	[5] [2]
2.	 a) Let (X,d) be a separable metric space. Prove that Card X ≤ c. b) Let A be an uncountable subset of R. Show that A has a limit point. 	[4] [3]
3.	a) If (X,d) is a compact metric space then show that $\exists a, b \in X$ such that $d(a,b) = \sup \{ d(x,y) : x, y \in X \}.$	[4]
	b) Let 'd ₁ ' and 'd ₂ ' be metrics on \mathbb{R}^2 defined by $d_1((x_1, y_1), (x_2, y_2)) = x_1 - x_2 + y_1 - y_2 $ and	
	$d_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ respectively. Prove that 'd ₁ ' and 'd ₂ ' are equivalent.	[3]
4.	a) Is a countable metric space connected? Justify your answer.b) Prove that a complete countable metric space has an isolated point.	[4] [3]
5.	a) Prove that every metric space is normal.	[4]
	b) Give an example of a closed and bounded subset A of a metric space (X,d) such that A is not compact.	[3]
6.	a) Prove that any bounded subset of \mathbb{R} is totally bounded.	[2]
	b) Show that a metric space X is totally bounded iff every sequence in X has a Cauchy subsequence.	[5]
7.	a) Define a Lebesgue number of an open cover of a metric space. Find an open cover of ${\ensuremath{\mathbb Q}}$ having	
	no Lebesgue number. b) Let $f:[0,1] \rightarrow [0,1]$ be a continuous map. Prove that f has a fixed point	[2+2]
0	b) Let $\Gamma_{i}[0,1] \to [0,1]$ be a continuous map. Prove that Γ has a fixed point.	[3]
0.	b) Let X be a connected metric space with at least two distinct points. Show that X is uncountable.	[4]
Ans	Answer <u>any three</u> questions from question no. <u>9 to 13</u> :	
9.	If a power series $\sum_{n=0}^{\infty} a_n x^n$ is neither nowhere convergent nor everywhere convergent, then show that	
	there exists a positive real number R such that the series converges absolutely for all x satisfying $ x < R$ and diverges for all x satisfying $ x > R$.	[5]
10.	a) Prove that the series $\sum \frac{x}{n+n^2x^2}$ is uniformly convergent for all real x.	[2]
	b) Prove that the series $\sum (-1)^n x^n (1-x)$ converges uniformly on [0,1], but the series $\sum x^n (1-x)$ is not uniformly convergent on [0,1].	[3]

11. a) Let $\{f_n\}$ be a sequence of function on an interval I that converges uniformly on I to a continuous function f. Let $c \in I$ and $\{x_n\}$ be a sequence in I converging to c. Prove that $\lim f_n(x_n) = f(c)$. [3]

b) Prove that the sequence $\{f_n\}$ where $f_n(x) = \frac{x^n}{1+x^n}$, $x \in [0,2]$, is not uniformly convergent on [0,2].

12. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous periodic function. If $f_n(x) = f\left(x + \frac{1}{n}\right) \forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}$; show that $\{f_n\}$ converges uniformly to f on \mathbb{R} .

13. a) If
$$f_n(x) = x + \frac{1}{n} \quad \forall x \in \mathbb{R}$$
 and $\forall n \in \mathbb{N}$ then show that $\{f_n^2\}$ is not uniformly convergent on \mathbb{R} . [2]
b) Prove that $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$ is continuous over \mathbb{R} . [3]

ove that
$$f(x) = \sum_{n=0}^{\infty} \frac{x}{n!}$$
 is continuous over \mathbb{R} .

Group - B

Answer <u>any three</u> questions from question no. <u>14 to 18</u> :

14. a) Solve:
$$(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = x(1-x^2)^{\frac{3}{2}}$$
, in terms of known integral. [5]

b) Solve the equation : $\{(x+3)D^2 - (2x+7)D + 2\}y = (x+3)^2e^x$; $D \equiv \frac{d}{dx}$; $D^2 \equiv \frac{d^2}{dx^2}$ by factorisation of operators. [5]

15. a) Solve:
$$\frac{dx}{dt} + 5x + y = e^{t}; \frac{dy}{dt} - x + 3y = e^{2t}.$$
 [5]

b) Apply Charpit's method to find the complete integral of the equation $p^2 x + q^2 y = z$; $p \equiv \frac{\partial z}{\partial x}$,

$$q \equiv \frac{\partial z}{\partial y} \,. \tag{5}$$

- 16. a) Find the general power series solution near x=2 of $\frac{d^2y}{dx^2} + (x-3)\frac{dy}{dx} + y = 0.$ [5]
 - b) Find the eigen values and eigen functions of the eigen value problem $\frac{d^2y}{dx^2} + \lambda y = 0$, $0 \le x \le \pi$, which satisfies the boundary conditions y = 0 at x = 0 and $\frac{dy}{dx} = 0$ at $x = \pi$.

17. a) Solve:
$$\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2 + y^2}$$
. [4]

- b) Using convolution theorem find the value of $L^{-1}\left\{\frac{1}{(p+2)^2(p-2)}\right\}$. [3]
- c) Form the partial differential equation by eliminating the arbitrary functions f and g from z = yf(x) + xg(y). [3]
- 18. a) Find f(y) such that the total differential equation $\{(yz+z)/x\}dx zdy + f(y)dz = 0$ is integrable. Hence solve it.
 - b) Using Laplace transform technique, solve $\{tD^2 + (1-2t)D 2\}y = 0$, $D \equiv \frac{d}{dt}$ given y(0) = 1 and y'(0) = 2.
 - c) State convolution theorem.

[4]

[4]

[2]

[5]

[2]

[5]

[3×10]

Answer <u>any two</u> questions from question no. <u>19 to 21</u> :

19. a) Show that the tangent to the curve : $x^3 + y^3 = 3axy$ at a point other than the origin where it meets the parabola $y^2 = 4ax$ is parallel to y-axis.

b) Find the pedal equation of the parabola : $r = \frac{2a}{1 + \cos \theta}$. [5]

20. a) If the polar equation of a curve is $r = f(\theta)$, where f is an even function of θ , show that the curvature of the curve at the point $\theta = 0$ is $\frac{f(0) - f''(0)}{\{f(0)\}^2}$. [4]

b) Find the oblique asymptotes of the curve : $xy^2 - y^2 - x^3 = 0$. [2]

- c) Find the envelope of the family of ellipses : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where the parameters a, b are connected by $ab = c^2$ (c = constant).
- 21. a) Find the coordinates of the centre of gravity of a circular sector of radius 'a', taking the bisector of the angle as the x-axis, the angle of spread of the sector being 2α.[5]

b) If $I_{m,n} = \int_{0}^{\frac{\pi}{2}} \cos^{m} x \sin nx \, dx$, show that $I_{m,m} = \frac{1}{2^{m+1}} \left[2 + \frac{2^{2}}{2} + \frac{2^{3}}{3} + \dots + \frac{2^{m}}{m} \right]$, m and n being positive integers. [5]

_____ × _____

[5]

[4]